

New Polyelectrolyte Materials for High Temperature Fuel Cells

John B. Kerr

Lawrence Berkeley National Laboratory (LBNL)

Collaborators:

Los Alamos National Laboratory (LANL).

3M Company

May17, 2007

Project ID # FCP33

Overview

Timeline

- Project start February 2007
- Project end September 2010
- Percent complete 5%

Budget

- Total project funding
 - DOE share \$6,000k
 - Contractor share \$1,000k inkind
- Funding received in FY06 \$0
- Funding for FY07 \$1150k

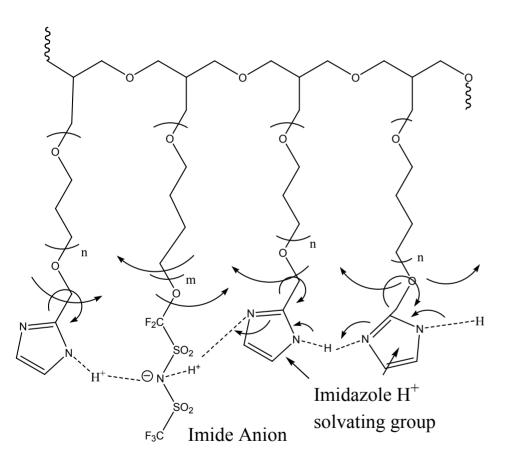
Barriers

- E. System Thermal and Water Management.
- B. Stack Material and Manufacturing Cost.
- A. Durability
- C. Electrode Performance.

Team/Partners

- Nitash Balsara, Rachel Segalman, Adam Weber (LBNL).
- Bryan Pivovar, James Boncella (LANL)
- Steve Hamrock (3M Company)

Objectives


- Investigate the use of solid polyelectrolyte proton conductors that do not require water.
- Prepare solid electrolytes where only the proton moves.
- Significant system simplifications for Fuel Cells.
 - Heat and water management greatly simplified.
 - Provide Car Manufacturers with Next Generation
 Materials that facilitate competitive Fuel Cell
 Vehicles.

Approach

- Measure conductivity, mechanical/thermal properties of Nafion®, 3M PFSA and other polyelectrolytes doped with imidazoles. Compare with water doped materials (FY07-08)
- Covalently attach imidazoles to side chains of ionomers with appropriate polymer backbones and test for conductivity, mechanical/thermal/chemical behavior and gas permeability (FY07-08).
- Prepare composite electrodes and operate MEAs without humidification (FY08-10).
- Develop Structure-Function relationships for polymer design. (FY09-10).

APPROACH

Tether Imidazoles and Acid Groups to Polymers

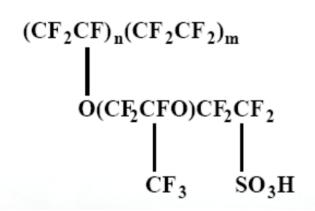
Side chains structures facilitate durability studies – small molecule fragments.

- •Attach anions and solvating groups by grafting —control nature and concentration.
- •Use nature and length of side chain to control mobility.
- •Control mechanical & morphological properties by altering backbone and use of block co-polymers.
 - •Polystyrene, Polynorbornene and Poly(arylene ether) backbones.
- •Promote Grotthuss Proton Transport $\rightarrow 10^{-1}$ S/cm

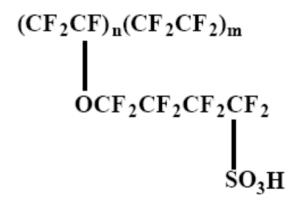
5

Summary of Prior Work (LBNL) (2003 –present)

- Proton Conductivities of completely solid state polyelectrolytes with a tethered imidazole solvation group show little loss of conductivity compared to polyelectrolytes doped with free solvent imidazole.
- Phase separation and polymer morphology are critical for promotion of fast proton mobility (Grotthuss mechanism) and selectivity in gas transport.
- A road map exists on how to attain solvent-free membranes with attractive proton conductivities (close to 0.1 S/cm):
 - Nature and concentration of acid group, polymer morphology, C-tethered imidazole present in large excess for Grotthuss proton transport.
- Keep imidazole protonated in electrode to prevent platinum catalyst poisoning use non-Pt catalysts.
- Imidazole doped PFSA appears to reject water.
 - Minimizes swelling and freezing issues.
 - PFSA with tethered imidazole may be most durable membrane.

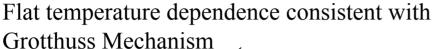

Summary of Prior Work (LANL) (2003 –present)

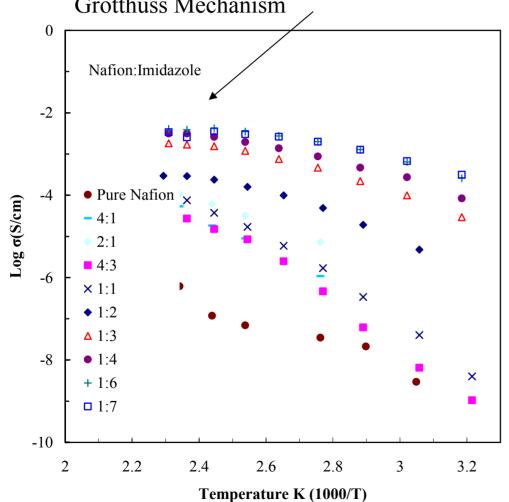
- Prepared and tested Polynorbornenes:
 - Attached imidazolium ions (not Grotthus capable).
 - Prepared block co-polymers.
 - Measured good conductivities (0.035S/cm at low RH(10%) when doped with phosphoric acid.
- Developed transport measurements for non-Nafion® membranes
- Developed composite electrode and MEA fabrication methods for non-Nafion® materials
 - Reduced High Frequency resistance
 - Non-Nafion[®] materials exhibit gas transport limitations₇



Summary of Prior Work (3M Company)

See Poster Presentation FCP32


Standard Nafion® PFSA



New 3M PFSA

Conductivities of Imidazole Doped Nafion® Films

Details of film casting

Nafion®: acid form

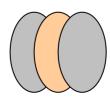
Equivalent MW: 1,100

Solvent used: aliphatic alcohol

and water mixed solvent.

Drying condition: 65°C for

2 hours.

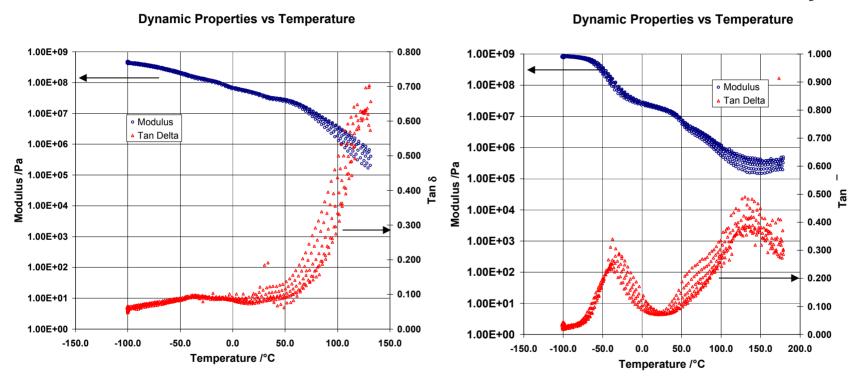

Film thickness: $100 \mu m \pm 20 \mu m$

Testing conditions

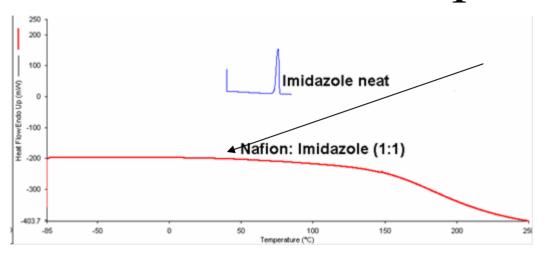
Film between two parallel stainless steel plate.

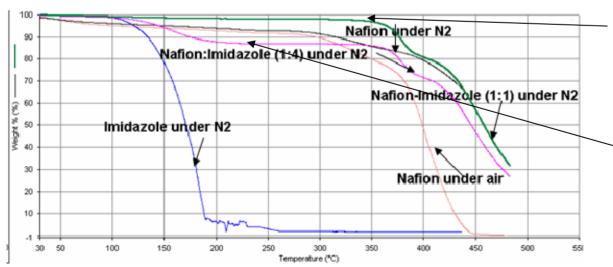
Impedance measurements.

Decreasing temperature from 170°C to 25°C.



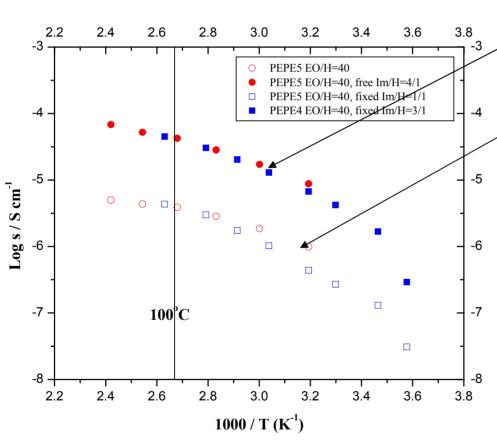
DMA of Nafion® and Nafion®-Imidazole


Dry Cast Nafion®-Imidazole SO₃H:Im 1:4


- •Imidazole results in an increase in the T_g of Nafion[®] from 120°C to 140°C due to better dissociation of the protons and the formation of the imidazolium salt.
- •Transition at -40°C indicates plasticization of perfluorinated matrix by imidazole, indicating mobile polymer backbones and less phase separation.

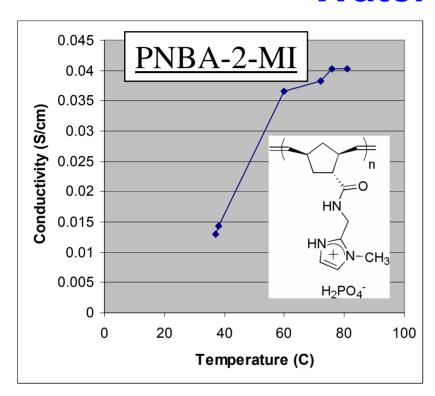
DSC/TGA Analysis of Imidazole-doped Nafion®

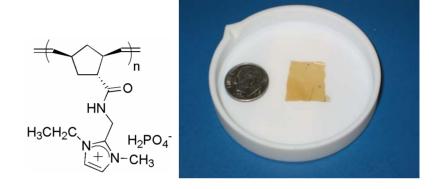
DSC shows no crystallization of Imidazole in Nafion® Matrix



- TGA shows no water uptake for Nafion®-Imidazole.
- Excess Imidazole
 Sublimes out
- Imidazole must be chemically bound.

Conductivities of free imidazole and fixed imidazole based proton conductors.


Alkylsulfonic acid groups fixed to polyepoxide polyethers.


- •Conductivity of fixed Imidazole polymer equal to the conductivity of the polymer doped with free imidazole solvent.
- •Relative concentration of Imidazole to acid group is critical.
- •Increase conductivity by optimization of tether length, acid/base concentration, nature of the acid group (Fluoroalkylsulfonylimides vs. Alkylsulfonate.
- •Polymer matrix and imidazole unable to participate in Grotthuss transport.
- → Road Map to solvent-free conductivity above 10⁻²S/cm exists.

12

Membrane Conductivity Dependence on Water Content

- PNBA-2-MI phosphate is water soluble, but shows reasonable conductivity even in the dry state
- The role of the phosphate anion and proton in conduction needs to be clarified

PNBA-2E5MI

Conductivity (90°C)	Relative Humidity
0.035 S/cm	10%
0.047 S/cm	25%

 PNBA-2E5MI is the ethylated version of PNBA-2-MI and is also water soluble, but likewise shows reasonable conductivity at low RH

NBE-Imidazole Copolymer

Proton conductive block copolymer

Technical Approaches

Task 1

Interface

Membrane-Electrode Interface

- ➤ Interfacial resistance measurement
- >Interfacial failure mechanism
- ➤ Membrane property criteria

Task 2

Membrane

Membrane Design

- >Effect of hydrophobic fluorine
- ➤ Effect of specific interaction
- > Electrochemical properties

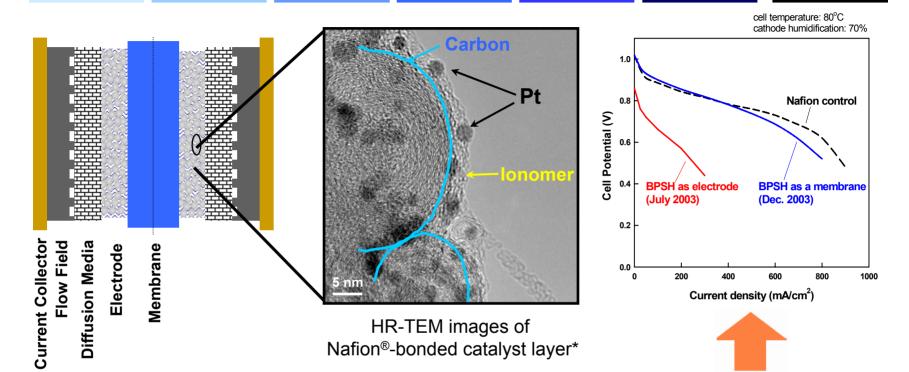
Task 3

Electrode

Electrode Ionomer Design

- ➤ Water/alcohol based catalyst ink
- \rightarrow H₂/air fuel cell performance
- > Electrochemical analysis

Task 4

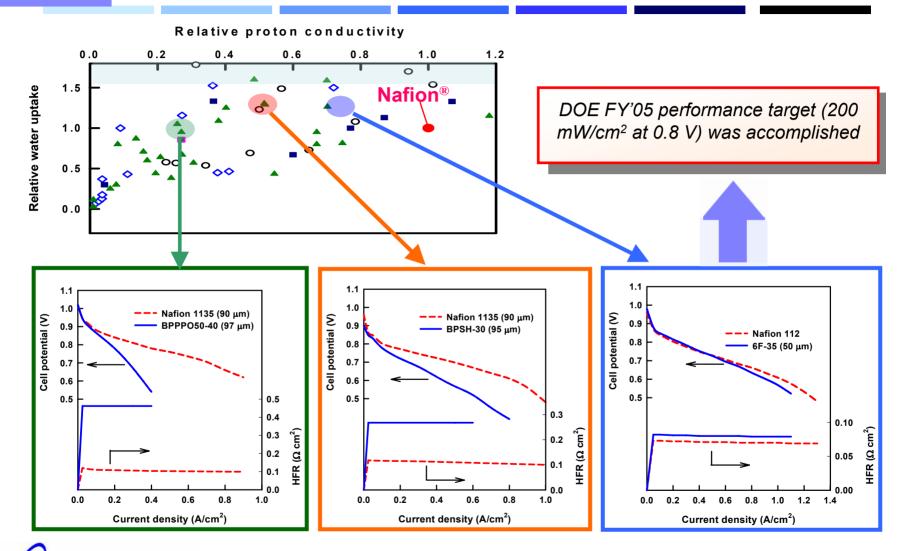

Durability

Long-Term Fuel Cell Test

- Fully hydrated conditions
- ➤ Start-stop test
- ➤ High T, low RH H₂/air conditions

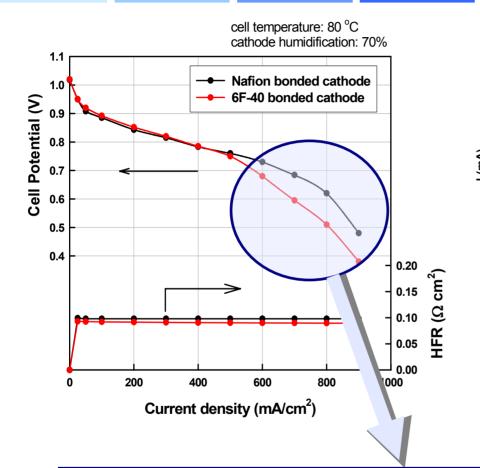
Electrode Ionomer Design

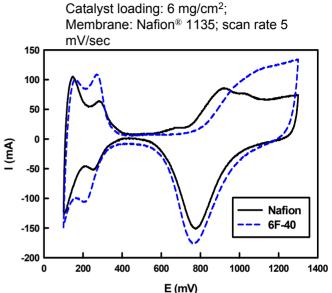
Nafion® Ionomer Binder


High reactant permeability (H_2 , methanol, O_2) High proton conductivity Chemically inert Created porous structure Optimized performance (only binder 15+ yrs)

Non-Nafion® Ionomer Binder

Good interfacial compatibility with non-Nafion® membranes Good high temperature stability Tailored chemical structure LANL started research from 2003




Fuel Cell Performance of Non-Nafion® Membranes

Fuel Cell Performance of Non-Nafion[®] Bonded Electrode from Alcohol Based Dispersion

- ❖ Electrochemical active surface area 6F-40 electrode ≅ Nafion® electrode,
- Hydrogen oxidation and reduction occur at very similar rates with a noticeable difference in the hydrogen desorption and oxidation peak shapes.

Non-Nafion® bonded cathode suffered from mass transfer limitation !!!

Future Work - Who does What & When?

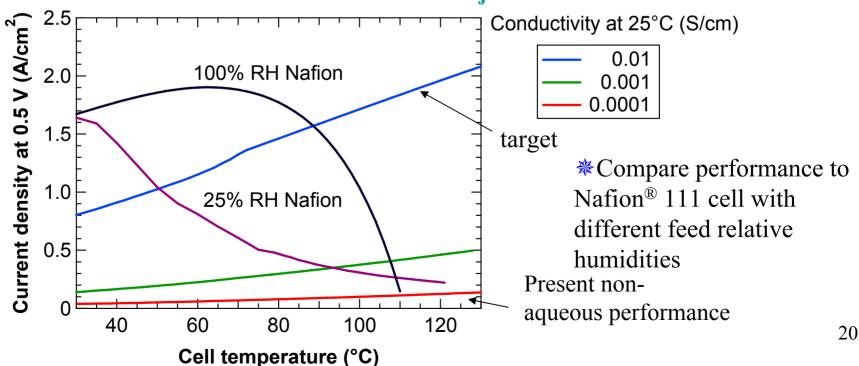
LBNL-Kerr/Balsara/Segalman/Weber

- Random and Block copolymer synthesis (FY07-10) Kerr/Balsara
- Tether acid and imidazole groups to polymers.(FY07-08) Kerr/Balsara
- Mechanical, morphological and electrochemical characterization of materials.(FY07-10) - Kerr/Balsara/Segalman
- Chemical and mechanical stability.(FY07-10) Kerr
- System modeling (FY07-10) Weber

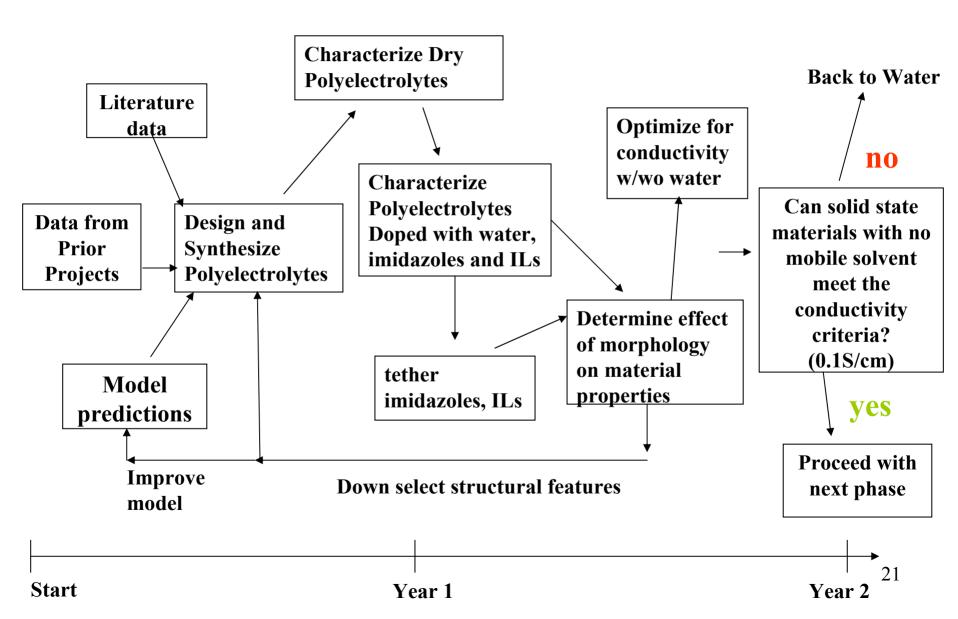
• LANL - Pivovar/Boncella

- Block copolymer synthesis of polynorbornene and poly(arylene ether) polymers.(FY07-08)- Boncella
- Transport measurements (conductivity, gas crossover)(FY07-08), cell testing and MEA preparation/testing(FY08-10). Pivovar

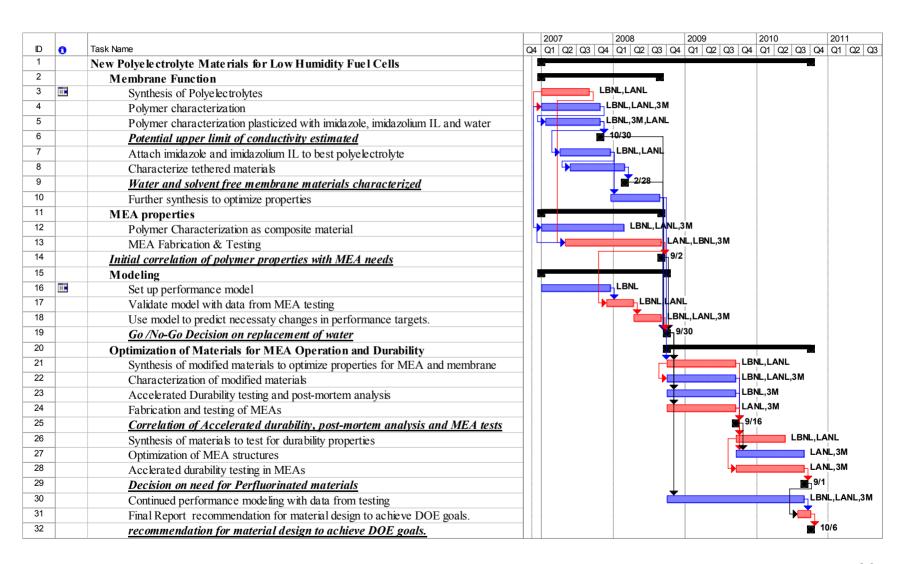
• 3M - Hamrock


- Provide PFSA material for testing and explore attachment of imidazole (FY07-08).
- Durability and chemical stability(FY07-10).
- MEA preparation and testing (FY09-10).

U of Central Florida - Fenton


Test membrane materials under HTMWG program (FY08-10)

System Modeling to Develop Decision Criteria


- Estimate suitability of membrane properties
 - Establish design targets and goals
- Analyze property and system tradeoffs
 - Examine distributions and limiting phenomena
- Ask and analyze "what if" questions
 - What conductivity do we really need?
 - What if we have a membrane that rejects water?

Work Flow- Years 1 & 2

Project Schedule

Summary

- Are membranes possible with conductivities of 0.1 S/cm without water?
- Attach heterocyclic bases (imidazole) to polyelectrolyte frameworks
 - Vary acid (fluoroalkylsulfonate, fluoroalkylsufonylimide)
 - Vary Imidazole and acid concentrations
 - Vary morphology and phase separation by change of backbone and block copolymer structures.
 - Is Grotthuss proton transport possible without water?

Summary- questions to be answered.

- Is 0.1 S/cm conductivity necessary?
 - System simplifications allow lower conductivities?
- How does morphology affect gas crossover?
- What is the chemical and mechanical durability?
- What polymers lead to water rejection?
- Are PFSA polymers the most durable and do they reject water?